Reg. No:

\square

SIDDHARTH INSTITUTE OF ENGINEERING \& TECHNOLOGY:: PUTTUR (AUTONOMOUS)
 B.Tech IV Year I Semester Regular Examinations November/December-2022
 UTILIZATION OF ELECTRICAL ENERGY
 (Electrical and Electronics Engineering)

Time: 3 hours
Max. Marks: 60

> (Answer all Five Units $5 \times 12=60$ Marks) UNIT-I.
1 a State and Explain Laws of Illumination.
L1 6M
b If a lamp of 200 cp is placed 1 m below a plane mirror which reflects 90% of
L3 6M light falling on it. Determine illumination at a point 3 m away from the foot of the lamp which is hung 4 m above ground.
OR
2 a Explain with sketch the principle and operation of fluorescent lamp.
L3 6M
b Write short notes on flood lighting.
L2 6M
UNIT-II
3 a Describe direct and indirect core type furnace with neat sketches. $\quad \mathbf{L 2} \quad \mathbf{6 M}$
b Explain application of induction heating.
L3 6M
OR
$\begin{array}{llll} & & \text { Explain the different methods of electric welding and their relative advantages. } & \text { L3 } \\ & \mathbf{1 2 M} \\ & \text { UNIT-III] } & & \\ \mathbf{5} & \text { a What is the Classification of Electrical Drives? } & \text { L2 } & \mathbf{6 M} \\ \text { b What are the advantages and disadvantages of Electric drives? } & \text { L3 } & \mathbf{6 M}\end{array}$
6 What is temperature rise in motor? Derive the equation for Heating of Motor.
L2 12M
UNIT-IV
7 a Explain about the different methods of electric braking systems in the case of $\mathbf{L 3} \quad \mathbf{6 M}$ traction.
b A goods trains weighing 300 tonnes is to be hauled by a locomotive up a gradient of 2% with an acceleration of $1 \mathrm{kmph} / \mathrm{s}$. Coefficient of adhesion is 20%. Track resistance $=45 \mathrm{~W} /$ Ton and effect of rotational masses is 15% of dead weight. If axle load is not to exceed by 20 tonnes, determine the weight of locomotive and number of axles.
L3 6M

OR

8 Describe how Plugging, Rheostatic braking and Regenerative braking are employed with DC series motor.

UNIT-V

9 a What is the tractive effort for propulsion of a train on level track?
L2 12M
L1 6M
b What is the tractive effort for propulsion of a train up and down a gradient?
L1 6M

OR

10 An electric train has quadrilateral speed-time curve as follows: 1. Uniform
L3 12M acceleration from rest 2 kmphps for 30 s .2 . Coasting for 40 s . 3 . Braking period of 25 s . The train is moving a uniform down gradient of 1% and the tractive resistance of $50 \mathrm{~N} /$ ton. The rotational resistance is 10% of the dead weight, the duration of the stop is 20 s and the overall efficiency of the transmission the gear and the motor as 80%. Calculate its schedule speed and specific energy consumption.

\qquad

